arXiv:math/9908110 [math.RT]AbstractReferencesReviewsResources
Low-Dimensional Unitary Representations of B_3
Published 1999-08-20, updated 1999-12-01Version 3
We characterize all simple unitarizable representations of the braid group $B_3$ on complex vector spaces of dimension $d \leq 5$. In particular, we prove that if $\sigma_1$ and $\sigma_2$ denote the two generating twists of $B_3$, then a simple representation $\rho:B_3 \to \gl(V)$ (for $\dim V \leq 5$) is unitarizable if and only if the eigenvalues $\lambda_1, \lambda_2, ..., \lambda_d$ of $\rho(\sigma_1)$ are distinct, satisfy $|\lambda_i|=1$ and $\mu^{(d)}_{1i} > 0$ for $2 \leq i \leq d$, where the $\mu^{(d)}_{1i}$ are functions of the eigenvalues, explicitly described in this paper.
Comments: Added sections + some minor updates
Related articles: Most relevant | Search more
arXiv:2412.01938 [math.RT] (Published 2024-12-02)
Eigenvalues of Heckman-Polychronakos operators
arXiv:1208.5418 [math.RT] (Published 2012-08-27)
Cycles of linear and semilinear mappings
Debora Duarte de Oliveira, Vyacheslav Futorny, Tatiana Klimchuk, Dmitry Kovalenko, Vladimir V. Sergeichuk
arXiv:1506.01884 [math.RT] (Published 2015-06-05)
Eigenvalues of Bethe vectors in the Gaudin model