{ "id": "math/9908110", "version": "v3", "published": "1999-08-20T05:23:19.000Z", "updated": "1999-12-01T22:29:57.000Z", "title": "Low-Dimensional Unitary Representations of B_3", "authors": [ "Imre Tuba" ], "comment": "Added sections + some minor updates", "categories": [ "math.RT", "math.RA" ], "abstract": "We characterize all simple unitarizable representations of the braid group $B_3$ on complex vector spaces of dimension $d \\leq 5$. In particular, we prove that if $\\sigma_1$ and $\\sigma_2$ denote the two generating twists of $B_3$, then a simple representation $\\rho:B_3 \\to \\gl(V)$ (for $\\dim V \\leq 5$) is unitarizable if and only if the eigenvalues $\\lambda_1, \\lambda_2, ..., \\lambda_d$ of $\\rho(\\sigma_1)$ are distinct, satisfy $|\\lambda_i|=1$ and $\\mu^{(d)}_{1i} > 0$ for $2 \\leq i \\leq d$, where the $\\mu^{(d)}_{1i}$ are functions of the eigenvalues, explicitly described in this paper.", "revisions": [ { "version": "v3", "updated": "1999-12-01T22:29:57.000Z" } ], "analyses": { "subjects": [ "20F36", "20C07", "81R10", "20H20", "16S34" ], "keywords": [ "low-dimensional unitary representations", "complex vector spaces", "eigenvalues", "simple unitarizable representations", "simple representation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1999math......8110T" } } }