arXiv:math/9709217 [math.FA]AbstractReferencesReviewsResources
On asymptotic properties of Banach spaces under renormings
Edward Odell, Thomas Schlumprecht
Published 1997-09-18Version 1
It is shown that a separable Banach space $X$ can be given an equivalent norm $|\!|\!|\cdot |\!|\!|$ with the following properties:\quad If $(x_n)\subseteq X$ is relatively weakly compact and $\lim_{m\to\infty} \lim_{n\to\infty}\break |\!|\!| x_m + x_n |\!|\!| = 2\lim_{m\to\infty} |\!|\!| x_m|\!|\!|$ then $(x_n)$ converges in norm. This yields a characterization of reflexivity once proposed by V.D.~Milman. In addition it is shown that some spreading model of a sequence in $(X, |\!|\!|\cdot |\!|\!|)$ is 1-equivalent to the unit vector basis of $\ell_1$ (respectively, $c_0$) implies that $X$ contains an isomorph of $\ell_1$ (respectively, $c_0$).
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:1305.0260 [math.FA] (Published 2013-04-30)
The M-basis Problem for Separable Banach Spaces
arXiv:1604.03547 [math.FA] (Published 2016-04-12)
The S-basis and M-basis Problems for Separable Banach Spaces
arXiv:2002.11512 [math.FA] (Published 2020-02-21)
Construction of the $ K{S^p}$ spaces on $\mathbb{R}^\infty$ and Separable Banach Spaces