arXiv:math/9512207 [math.FA]AbstractReferencesReviewsResources
Quadratic forms in unitary operators
Published 1995-12-14Version 1
Let $u_1,\ldots,u_n$ be unitary operators on a Hilbert space $H$. We study the norm $$\left\|\sum^{i=n}_{i=1} u_i \otimes \bar u_i\right\|\leqno (1)$$ of the operator $\sum u_i \otimes \bar u_i$ acting on the Hilbertian tensor product $H\otimes_2 \overline H$. The main result of this note is Theorem 1. For any $n$-tuple $u_1,\ldots, u_n$ of unitary operators in $B(H)$, we have $$2\sqrt{n-1} \le \left\|\sum^n_1 u_i \otimes \bar u_i\right\|.\leqno (6)$$ In other words, the right side of (6) is minimal exactly when $u_i = \lambda(g_i)$.
Journal: Linear Algebra and its Applications. 267 (1997) 125-137.
Categories: math.FA
Tags: journal article
Related articles: Most relevant | Search more
arXiv:0909.1035 [math.FA] (Published 2009-09-05)
Multipliers on Hilbert spaces of functions on R
Frames of subspaces in Hilbert spaces with $W$-metrics
Avoiding σ-porous sets in Hilbert spaces