{ "id": "math/9512207", "version": "v1", "published": "1995-12-14T00:00:00.000Z", "updated": "1995-12-14T00:00:00.000Z", "title": "Quadratic forms in unitary operators", "authors": [ "Gilles Pisier" ], "journal": "Linear Algebra and its Applications. 267 (1997) 125-137.", "categories": [ "math.FA" ], "abstract": "Let $u_1,\\ldots,u_n$ be unitary operators on a Hilbert space $H$. We study the norm $$\\left\\|\\sum^{i=n}_{i=1} u_i \\otimes \\bar u_i\\right\\|\\leqno (1)$$ of the operator $\\sum u_i \\otimes \\bar u_i$ acting on the Hilbertian tensor product $H\\otimes_2 \\overline H$. The main result of this note is Theorem 1. For any $n$-tuple $u_1,\\ldots, u_n$ of unitary operators in $B(H)$, we have $$2\\sqrt{n-1} \\le \\left\\|\\sum^n_1 u_i \\otimes \\bar u_i\\right\\|.\\leqno (6)$$ In other words, the right side of (6) is minimal exactly when $u_i = \\lambda(g_i)$.", "revisions": [ { "version": "v1", "updated": "1995-12-14T00:00:00.000Z" } ], "analyses": { "keywords": [ "unitary operators", "quadratic forms", "hilbertian tensor product", "right side", "hilbert space" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1995math.....12207P" } } }