arXiv Analytics

Sign in

arXiv:math/9509213 [math.FA]AbstractReferencesReviewsResources

A rearrangement invariant space isometric to $L_p$ coincides with $L_p$

Yuri A. Abramovich, Mikhail Zaidenberg

Published 1995-09-10Version 1

The following theorem is the main result of this note. Theorem 1. Let $(E, \|\cdot\|_E) $ be a rearrangement invariant Banach function space on the interval $[0, 1]$. If $E$ is isometric to $\L_p [0, 1]$ for some $1\le p<\infty$, then $E$ coincides with $\L_p [0, 1]$ and furthermore $\|\cdot\|_E = \lambda\|\cdot\|_{\L_p}$, where $\lambda = \|{\bf 1}\|_E$.

Related articles: Most relevant | Search more
arXiv:2010.08192 [math.FA] (Published 2020-10-16)
On a question of Pietch
arXiv:1705.08916 [math.FA] (Published 2017-05-24)
Images of nowhere differentiable Lipschitz maps of $[0,1]$ into $L_1[0,1]$
arXiv:2104.05461 [math.FA] (Published 2021-04-12)
Interpolating sequences for the Banach algebras generated by a class of test functions