{ "id": "math/9509213", "version": "v1", "published": "1995-09-10T00:00:00.000Z", "updated": "1995-09-10T00:00:00.000Z", "title": "A rearrangement invariant space isometric to $L_p$ coincides with $L_p$", "authors": [ "Yuri A. Abramovich", "Mikhail Zaidenberg" ], "categories": [ "math.FA" ], "abstract": "The following theorem is the main result of this note. Theorem 1. Let $(E, \\|\\cdot\\|_E) $ be a rearrangement invariant Banach function space on the interval $[0, 1]$. If $E$ is isometric to $\\L_p [0, 1]$ for some $1\\le p<\\infty$, then $E$ coincides with $\\L_p [0, 1]$ and furthermore $\\|\\cdot\\|_E = \\lambda\\|\\cdot\\|_{\\L_p}$, where $\\lambda = \\|{\\bf 1}\\|_E$.", "revisions": [ { "version": "v1", "updated": "1995-09-10T00:00:00.000Z" } ], "analyses": { "subjects": [ "46E30" ], "keywords": [ "rearrangement invariant space isometric", "rearrangement invariant banach function space", "main result" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1995math......9213A" } } }