arXiv Analytics

Sign in

arXiv:math/9501231 [math.CO]AbstractReferencesReviewsResources

A new series of dense graphs of high girth

Felix Lazebnik, Vasiliy A. Ustimenko, Andrew J. Woldar

Published 1995-01-01Version 1

Let $k\ge 1$ be an odd integer, $t=\lfloor {{k+2}\over 4}\rfloor$, and $q$ be a prime power. We construct a bipartite, $q$-regular, edge-transitive graph $C\!D(k,q)$ of order $v \le 2q^{k-t+1}$ and girth $g \ge k+5$. If $e$ is the the number of edges of $C\!D(k,q)$, then $e =\Omega(v^{1+ {1\over {k-t+1}}})$. These graphs provide the best known asymptotic lower bound for the greatest number of edges in graphs of order $v$ and girth at least $g$, $ g\ge 5$, $g \not= 11,12$. For $g\ge 24$, this represents a slight improvement on bounds established by Margulis and Lubotzky, Phillips, Sarnak; for $5\le g\le 23$, $g\not= 11,12$, it improves on or ties existing bounds.

Comments: 7 pages
Journal: Bull. Amer. Math. Soc. (N.S.) 32 (1995) 73-79
Categories: math.CO
Related articles: Most relevant | Search more
arXiv:2302.00352 [math.CO] (Published 2023-02-01)
Flip-width: Cops and Robber on dense graphs
arXiv:1806.09651 [math.CO] (Published 2018-06-25)
Even cycles in dense graphs
arXiv:math/0406123 [math.CO] (Published 2004-06-07)
Pebbling in Dense Graphs