{ "id": "math/9501231", "version": "v1", "published": "1995-01-01T00:00:00.000Z", "updated": "1995-01-01T00:00:00.000Z", "title": "A new series of dense graphs of high girth", "authors": [ "Felix Lazebnik", "Vasiliy A. Ustimenko", "Andrew J. Woldar" ], "comment": "7 pages", "journal": "Bull. Amer. Math. Soc. (N.S.) 32 (1995) 73-79", "categories": [ "math.CO" ], "abstract": "Let $k\\ge 1$ be an odd integer, $t=\\lfloor {{k+2}\\over 4}\\rfloor$, and $q$ be a prime power. We construct a bipartite, $q$-regular, edge-transitive graph $C\\!D(k,q)$ of order $v \\le 2q^{k-t+1}$ and girth $g \\ge k+5$. If $e$ is the the number of edges of $C\\!D(k,q)$, then $e =\\Omega(v^{1+ {1\\over {k-t+1}}})$. These graphs provide the best known asymptotic lower bound for the greatest number of edges in graphs of order $v$ and girth at least $g$, $ g\\ge 5$, $g \\not= 11,12$. For $g\\ge 24$, this represents a slight improvement on bounds established by Margulis and Lubotzky, Phillips, Sarnak; for $5\\le g\\le 23$, $g\\not= 11,12$, it improves on or ties existing bounds.", "revisions": [ { "version": "v1", "updated": "1995-01-01T00:00:00.000Z" } ], "analyses": { "keywords": [ "high girth", "dense graphs", "asymptotic lower bound", "odd integer", "prime power" ], "tags": [ "journal article", "expository article" ], "publication": { "publisher": "AMS", "journal": "Bull. Amer. Math. Soc." }, "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1995math......1231L" } } }