arXiv:math/9406210 [math.FA]AbstractReferencesReviewsResources
A remark on contraction semigroups on Banach spaces
Published 1994-06-06Version 1
Let $X$ be a complex Banach space and let $J:X \to X^*$ be a duality section on $X$ (i.e. $\langle x,J(x)\rangle=\|J(x)\|\|x\|=\|J(x)\|^2=\|x\|^2$). For any unit vector $x$ and any ($C_0$) contraction semigroup $T=\{e^{tA}:t \geq 0\}$, Goldstein proved that if $X$ is a Hilbert space and if $|\langle T(t) x,J(x)\rangle| \to 1 $ as $t \to \infty$, then $x$ is an eigenvector of $A$ corresponding to a purely imaginary eigenvalue. In this article, we prove the similar result holds if $X$ is a strictly convex complex Banach space.
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:math/9412216 [math.FA] (Published 1994-12-19)
Extremal properties of contraction semigroups on $c_o$
Some inequalities for $(α, β)$-normal operators in Hilbert spaces
Avoiding σ-porous sets in Hilbert spaces