{ "id": "math/9406210", "version": "v1", "published": "1994-06-06T17:36:22.000Z", "updated": "1994-06-06T17:36:22.000Z", "title": "A remark on contraction semigroups on Banach spaces", "authors": [ "P. K. Lin" ], "categories": [ "math.FA" ], "abstract": "Let $X$ be a complex Banach space and let $J:X \\to X^*$ be a duality section on $X$ (i.e. $\\langle x,J(x)\\rangle=\\|J(x)\\|\\|x\\|=\\|J(x)\\|^2=\\|x\\|^2$). For any unit vector $x$ and any ($C_0$) contraction semigroup $T=\\{e^{tA}:t \\geq 0\\}$, Goldstein proved that if $X$ is a Hilbert space and if $|\\langle T(t) x,J(x)\\rangle| \\to 1 $ as $t \\to \\infty$, then $x$ is an eigenvector of $A$ corresponding to a purely imaginary eigenvalue. In this article, we prove the similar result holds if $X$ is a strictly convex complex Banach space.", "revisions": [ { "version": "v1", "updated": "1994-06-06T17:36:22.000Z" } ], "analyses": { "keywords": [ "contraction semigroup", "strictly convex complex banach space", "similar result holds", "unit vector", "hilbert space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1994math......6210L" } } }