arXiv:math/0703831 [math.PR]AbstractReferencesReviewsResources
A Limit Theorem for Financial Markets with Inert Investors
Erhan Bayraktar, Ulrich Horst, Ronnie Sircar
Published 2007-03-28Version 1
We study the effect of investor inertia on stock price fluctuations with a market microstructure model comprising many small investors who are inactive most of the time. It turns out that semi-Markov processes are tailor made for modelling inert investors. With a suitable scaling, we show that when the price is driven by the market imbalance, the log price process is approximated by a process with long range dependence and non-Gaussian returns distributions, driven by a fractional Brownian motion. Consequently, investor inertia may lead to arbitrage opportunities for sophisticated market participants. The mathematical contributions are a functional central limit theorem for stationary semi-Markov processes, and approximation results for stochastic integrals of continuous semimartingales with respect to fractional Brownian motion.