arXiv:math/0701060 [math.NT]AbstractReferencesReviewsResources
On Iwasawa Theory over Function Fields
Ka-Lam Kueh, King Fai Lai, Ki-Seng Tan
Published 2007-01-02Version 1
Let $k_{\infty}$ be a $\Z_p^d$-extension of a global function field $k$ of characteristic $p$. Let $\Cl_{k_{\infty},p}$ be the $p$ completion of the class group of $k_{\infty}$. We prove that the characteristic ideal of the Galois module $\Cl_{k_{\infty},p}$ is generated by the Stickelberger element of Gross which calculates the special values of $L$ functions.
Comments: 26 pages
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:2405.12909 [math.NT] (Published 2024-05-21)
Jacobians of Graphs via Edges and Iwasawa Theory
arXiv:2502.03464 [math.NT] (Published 2025-02-05)
Improving the trivial bound for $\ell$-torsion in class groups
arXiv:1703.05729 [math.NT] (Published 2017-03-16)
On Abelianized Absolute Galois Group of Global Function Fields