{ "id": "math/0701060", "version": "v1", "published": "2007-01-02T13:53:05.000Z", "updated": "2007-01-02T13:53:05.000Z", "title": "On Iwasawa Theory over Function Fields", "authors": [ "Ka-Lam Kueh", "King Fai Lai", "Ki-Seng Tan" ], "comment": "26 pages", "categories": [ "math.NT" ], "abstract": "Let $k_{\\infty}$ be a $\\Z_p^d$-extension of a global function field $k$ of characteristic $p$. Let $\\Cl_{k_{\\infty},p}$ be the $p$ completion of the class group of $k_{\\infty}$. We prove that the characteristic ideal of the Galois module $\\Cl_{k_{\\infty},p}$ is generated by the Stickelberger element of Gross which calculates the special values of $L$ functions.", "revisions": [ { "version": "v1", "updated": "2007-01-02T13:53:05.000Z" } ], "analyses": { "subjects": [ "11S40", "11R42", "11R58" ], "keywords": [ "iwasawa theory", "global function field", "class group", "special values", "characteristic ideal" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......1060K" } } }