arXiv:math/0612782 [math.AG]AbstractReferencesReviewsResources
New cases of logarithmic equivalence of Welschinger and Gromov-Witten invariants
Ilia Itenberg, Viatcheslav Kharlamov, Eugenii Shustin
Published 2006-12-27Version 1
We consider the product of two projective lines equipped with the complex conjugation transforming $(x,y)$ into $(\bar{y},\bar{x})$ and blown up in at most two real, or two complex conjugate, points. For these four surfaces we prove the logarithmic equivalence of Welschinger and Gromov-Witten invariants.
Comments: 13 pages, 6 figures
Related articles: Most relevant | Search more
arXiv:math/0407188 [math.AG] (Published 2004-07-11)
Logarithmic equivalence of Welschinger and Gromov-Witten invariants
arXiv:math/0603019 [math.AG] (Published 2006-03-01)
The degree of the variety of rational ruled surfaces and Gromov-Witten invariants
arXiv:2401.01627 [math.AG] (Published 2024-01-03)
Gromov-Witten Invariants of Bielliptic Surfaces