{ "id": "math/0612782", "version": "v1", "published": "2006-12-27T13:24:45.000Z", "updated": "2006-12-27T13:24:45.000Z", "title": "New cases of logarithmic equivalence of Welschinger and Gromov-Witten invariants", "authors": [ "Ilia Itenberg", "Viatcheslav Kharlamov", "Eugenii Shustin" ], "comment": "13 pages, 6 figures", "categories": [ "math.AG", "math.SG" ], "abstract": "We consider the product of two projective lines equipped with the complex conjugation transforming $(x,y)$ into $(\\bar{y},\\bar{x})$ and blown up in at most two real, or two complex conjugate, points. For these four surfaces we prove the logarithmic equivalence of Welschinger and Gromov-Witten invariants.", "revisions": [ { "version": "v1", "updated": "2006-12-27T13:24:45.000Z" } ], "analyses": { "subjects": [ "14N10", "14P99", "14N35" ], "keywords": [ "gromov-witten invariants", "logarithmic equivalence", "welschinger", "complex conjugate", "projective lines" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....12782I" } } }