arXiv:math/0611809 [math.NT]AbstractReferencesReviewsResources
Subconvexity for the Riemann zeta-function and the divisor problem
Published 2006-11-27, updated 2007-09-18Version 3
A simple proof of the classical subconvexity bound $\zeta(1/2+it) \ll_\epsilon t^{1/6+\epsilon}$ for the Riemann zeta-function is given, and estimation by more refined techniques is discussed. The connections between the Dirichlet divisor problem and the mean square of $|\zeta(1/2+it)|$ are analysed.
Comments: 18 pages
Journal: Bulletin CXXXIV de l'Acad\'emie Serbe des Sciences et des Arts - 2007, Classe des Sciences math\'ematiques et naturelles, Sciences math\'ematiques No. 32, pp. 13-32
Categories: math.NT
Keywords: riemann zeta-function, dirichlet divisor problem, simple proof, classical subconvexity bound, mean square
Tags: journal article
Related articles: Most relevant | Search more
On the mean square of the Riemann zeta-function in short intervals
On the Riemann zeta-function and the divisor problem IV
On the Riemann zeta-function and the divisor problem III