arXiv Analytics

Sign in

arXiv:math/0611809 [math.NT]AbstractReferencesReviewsResources

Subconvexity for the Riemann zeta-function and the divisor problem

M. N. Huxley, A. Ivić

Published 2006-11-27, updated 2007-09-18Version 3

A simple proof of the classical subconvexity bound $\zeta(1/2+it) \ll_\epsilon t^{1/6+\epsilon}$ for the Riemann zeta-function is given, and estimation by more refined techniques is discussed. The connections between the Dirichlet divisor problem and the mean square of $|\zeta(1/2+it)|$ are analysed.

Comments: 18 pages
Journal: Bulletin CXXXIV de l'Acad\'emie Serbe des Sciences et des Arts - 2007, Classe des Sciences math\'ematiques et naturelles, Sciences math\'ematiques No. 32, pp. 13-32
Categories: math.NT
Subjects: 11M06, 11N37
Related articles: Most relevant | Search more
arXiv:0803.0132 [math.NT] (Published 2008-03-02, updated 2009-01-15)
On the mean square of the Riemann zeta-function in short intervals
arXiv:math/0701202 [math.NT] (Published 2007-01-07, updated 2007-01-21)
On the Riemann zeta-function and the divisor problem IV
arXiv:math/0610539 [math.NT] (Published 2006-10-18, updated 2006-10-26)
On the Riemann zeta-function and the divisor problem III