arXiv Analytics

Sign in

arXiv:math/0610539 [math.NT]AbstractReferencesReviewsResources

On the Riemann zeta-function and the divisor problem III

Aleksandar Ivic

Published 2006-10-18, updated 2006-10-26Version 3

Let $\Delta(x)$ denote the error term in the Dirichlet divisor problem, and $E(T)$ the error term in the asymptotic formula for the mean square of $|\zeta(1/2+it)|$. If $E^*(t) = E(t) - 2\pi\Delta^*(t/2\pi)$ with $\Delta^*(x) = -\Delta(x) + 2\Delta(2x) - {1\over2}\Delta(4x)$ and we set $\int_0^T E^*(t) dt = 3\pi T/4 + R(T)$, then we obtain $$ R(T) = O_\epsilon(T^{593/912+\epsilon}), \int_0^TR^4(t) dt \ll_\epsilon T^{3+\epsilon}, $$ and $$ \int_0^TR^2(t) dt = T^2P_3(\log T) + O_\epsilon(T^{11/6+\epsilon}), $$ where $P_3(y)$ is a cubic polynomial in $y$ with positive leading coefficient.

Comments: 18 pages
Journal: Annales Univ. Sci. Budapest., Sect. Comp. 29(2008), 3-23
Categories: math.NT
Subjects: 11N37, 11M06
Related articles: Most relevant | Search more
arXiv:math/0701202 [math.NT] (Published 2007-01-07, updated 2007-01-21)
On the Riemann zeta-function and the divisor problem IV
arXiv:0806.3902 [math.NT] (Published 2008-06-24)
On the mean square of the error term for the two-dimensional divisor problem (I)
arXiv:math/0603491 [math.NT] (Published 2006-03-21, updated 2006-12-26)
On the mean square of the zeta-function and the divisor problem