{ "id": "math/0610539", "version": "v3", "published": "2006-10-18T06:35:29.000Z", "updated": "2006-10-26T08:23:39.000Z", "title": "On the Riemann zeta-function and the divisor problem III", "authors": [ "Aleksandar Ivic" ], "comment": "18 pages", "journal": "Annales Univ. Sci. Budapest., Sect. Comp. 29(2008), 3-23", "categories": [ "math.NT" ], "abstract": "Let $\\Delta(x)$ denote the error term in the Dirichlet divisor problem, and $E(T)$ the error term in the asymptotic formula for the mean square of $|\\zeta(1/2+it)|$. If $E^*(t) = E(t) - 2\\pi\\Delta^*(t/2\\pi)$ with $\\Delta^*(x) = -\\Delta(x) + 2\\Delta(2x) - {1\\over2}\\Delta(4x)$ and we set $\\int_0^T E^*(t) dt = 3\\pi T/4 + R(T)$, then we obtain $$ R(T) = O_\\epsilon(T^{593/912+\\epsilon}), \\int_0^TR^4(t) dt \\ll_\\epsilon T^{3+\\epsilon}, $$ and $$ \\int_0^TR^2(t) dt = T^2P_3(\\log T) + O_\\epsilon(T^{11/6+\\epsilon}), $$ where $P_3(y)$ is a cubic polynomial in $y$ with positive leading coefficient.", "revisions": [ { "version": "v3", "updated": "2006-10-26T08:23:39.000Z" } ], "analyses": { "subjects": [ "11N37", "11M06" ], "keywords": [ "riemann zeta-function", "error term", "dirichlet divisor problem", "cubic polynomial", "asymptotic formula" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....10539I" } } }