arXiv:math/0610274 [math.NT]AbstractReferencesReviewsResources
On certain arithmetic functions involving exponential divisors
Published 2006-10-09, updated 2009-10-10Version 2
The integer $d$ is called an exponential divisor of $n=\prod_{i=1}^r p_i^{a_i}>1$ if $d=\prod_{i=1}^r p_i^{c_i}$, where $c_i \mid a_i$ for every $1\le i \le r$. The integers $n=\prod_{i=1}^r p_i^{a_i}, m=\prod_{i=1}^r p_i^{b_i}>1$ having the same prime factors are called exponentially coprime if $(a_i,b_i)=1$ for every $1\le i\le r$. In the paper we investigate asymptotic properties of certain arithmetic functions involving exponential divisors and exponentially coprime integers.
Comments: some misprints corrected
Journal: Annales Univ. Sci. Budapest., Sect. Comp., 24 (2004), 285-294
Categories: math.NT
Tags: journal article
Related articles: Most relevant | Search more
arXiv:math/0610275 [math.NT] (Published 2006-10-09)
On exponentially coprime integers
arXiv:1704.02881 [math.NT] (Published 2017-04-10)
Ramanujan expansions of arithmetic functions of several variables
arXiv:1604.07542 [math.NT] (Published 2016-04-26)
Ramanujan-Fourier series of certain arithmetic functions of two variables