{ "id": "math/0610274", "version": "v2", "published": "2006-10-09T08:07:25.000Z", "updated": "2009-10-10T08:12:53.000Z", "title": "On certain arithmetic functions involving exponential divisors", "authors": [ "László Tóth" ], "comment": "some misprints corrected", "journal": "Annales Univ. Sci. Budapest., Sect. Comp., 24 (2004), 285-294", "categories": [ "math.NT" ], "abstract": "The integer $d$ is called an exponential divisor of $n=\\prod_{i=1}^r p_i^{a_i}>1$ if $d=\\prod_{i=1}^r p_i^{c_i}$, where $c_i \\mid a_i$ for every $1\\le i \\le r$. The integers $n=\\prod_{i=1}^r p_i^{a_i}, m=\\prod_{i=1}^r p_i^{b_i}>1$ having the same prime factors are called exponentially coprime if $(a_i,b_i)=1$ for every $1\\le i\\le r$. In the paper we investigate asymptotic properties of certain arithmetic functions involving exponential divisors and exponentially coprime integers.", "revisions": [ { "version": "v2", "updated": "2009-10-10T08:12:53.000Z" } ], "analyses": { "subjects": [ "11A25", "11N37" ], "keywords": [ "exponential divisor", "arithmetic functions", "prime factors", "exponentially coprime integers" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....10274T" } } }