arXiv:math/0607729 [math.FA]AbstractReferencesReviewsResources
Multipliers of $\pmb{A}_{\pmb{p}}\pmb{((0,} \pmb{\infty}\pmb{))}$ with order convolution
Published 2006-07-28Version 1
The aim of this paper is to study the multipliers from $A_{r}(I)$ to $A_{p}(I), r \ne p$, where $I=(0,\infty)$ is the locally compact topological semigroup with multiplication max and usual topology and $A_{r}(I) = \{f \in L_{1}(I)\hbox{:} \hat{f} \in L_{r}(\hat{I})\}$ with norm $|||f|||_{r} = \|f\|_{1} + \|\hat{f}\|_{r}$.
Comments: 8 pages
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:2011.03961 [math.FA] (Published 2020-11-08)
Multipliers on $\mathcal{S}_ω(\mathbb{R}^N)$
arXiv:1909.12883 [math.FA] (Published 2019-09-27)
Multipliers and operator space structure of weak product spaces
arXiv:1802.03618 [math.FA] (Published 2018-02-10)
Invertibility of Multipliers for Continuous G-frames