arXiv Analytics

Sign in

arXiv:2011.03961 [math.FA]AbstractReferencesReviewsResources

Multipliers on $\mathcal{S}_ω(\mathbb{R}^N)$

Angela A. Albanese, Claudio Mele

Published 2020-11-08Version 1

The aim of this paper is to introduce and to study the space $\mathcal{O}_{M,\omega}(\mathbb{R}^N)$ of the multipliers of the space $\mathcal{S}_{\omega}(\mathbb{R}^N)$ of the $\omega$-ultradifferentiable rapidly decreasing functions of Beurling type. We determine various properties of the space $\mathcal{O}_{M,\omega}(\mathbb{R}^N)$. Moreover, we define and compare some lc-topologies of which $\mathcal{O}_{M,\omega}(\mathbb{R}^N)$ can be naturally endowed.

Related articles: Most relevant | Search more
arXiv:1909.12883 [math.FA] (Published 2019-09-27)
Multipliers and operator space structure of weak product spaces
arXiv:1706.06522 [math.FA] (Published 2017-06-20)
A Note on multipliers between model spaces
arXiv:math/0607729 [math.FA] (Published 2006-07-28)
Multipliers of $\pmb{A}_{\pmb{p}}\pmb{((0,} \pmb{\infty}\pmb{))}$ with order convolution