arXiv Analytics

Sign in

arXiv:math/0607456 [math.AP]AbstractReferencesReviewsResources

Well-posedness of the Cauchy problem for the fractional power dissipative equations

Changxing Miao, Baoquan Yuan, Bo Zhang

Published 2006-07-19, updated 2006-08-16Version 2

This paper studies the Cauchy problem for the nonlinear fractional power dissipative equation $u_t+(-\triangle)^\alpha u= F(u)$ for initial data in the Lebesgue space $L^r(\mr^n)$ with $\ds r\ge r_d\triangleq{nb}/({2\alpha-d})$ or the homogeneous Besov space $\ds\dot{B}^{-\sigma}_{p,\infty}(\mr^n)$ with $\ds\sigma=(2\alpha-d)/b-n/p$ and $1\le p\le \infty$, where $\alpha>0$, $F(u)=f(u)$ or $Q(D)f(u)$ with $Q(D)$ being a homogeneous pseudo-differential operator of order $d\in[0,2\alpha)$ and $f(u)$ is a function of $u$ which behaves like $|u|^bu$ with $b>0$.

Related articles: Most relevant | Search more
arXiv:math/0408332 [math.AP] (Published 2004-08-24)
Reaction diffusion equations with super-linear absorption: universal bounds, uniqueness for the Cauchy problem, boundedness of stationary solutions
arXiv:math/0412241 [math.AP] (Published 2004-12-13)
Uniqueness/nonuniqueness for nonnegative solutions of the Cauchy problem for $u_t=Δu-u^p$ in a punctured space
arXiv:1103.1292 [math.AP] (Published 2011-03-07)
The Cauchy problem for the DMKP equation