{ "id": "math/0607456", "version": "v2", "published": "2006-07-19T09:34:18.000Z", "updated": "2006-08-16T11:31:21.000Z", "title": "Well-posedness of the Cauchy problem for the fractional power dissipative equations", "authors": [ "Changxing Miao", "Baoquan Yuan", "Bo Zhang" ], "comment": "30pages", "journal": "Nonlinear Analysis 68(2008)461-484", "doi": "10.1016/j.na.2006.11.011", "categories": [ "math.AP" ], "abstract": "This paper studies the Cauchy problem for the nonlinear fractional power dissipative equation $u_t+(-\\triangle)^\\alpha u= F(u)$ for initial data in the Lebesgue space $L^r(\\mr^n)$ with $\\ds r\\ge r_d\\triangleq{nb}/({2\\alpha-d})$ or the homogeneous Besov space $\\ds\\dot{B}^{-\\sigma}_{p,\\infty}(\\mr^n)$ with $\\ds\\sigma=(2\\alpha-d)/b-n/p$ and $1\\le p\\le \\infty$, where $\\alpha>0$, $F(u)=f(u)$ or $Q(D)f(u)$ with $Q(D)$ being a homogeneous pseudo-differential operator of order $d\\in[0,2\\alpha)$ and $f(u)$ is a function of $u$ which behaves like $|u|^bu$ with $b>0$.", "revisions": [ { "version": "v2", "updated": "2006-08-16T11:31:21.000Z" } ], "analyses": { "subjects": [ "35K05", "35K15" ], "keywords": [ "cauchy problem", "well-posedness", "nonlinear fractional power dissipative equation", "homogeneous pseudo-differential operator", "paper studies" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......7456M" } } }