arXiv Analytics

Sign in

arXiv:math/0607398 [math.PR]AbstractReferencesReviewsResources

An isoperimetric inequality on the $\ell_p$ balls

Sasha Sodin

Published 2006-07-17, updated 2008-05-23Version 3

The normalised volume measure on the $\ell_p^n$ unit ball ($1\leq p\leq 2$) satisfies the following isoperimetric inequality: the boundary measure of a set of measure $a$ is at least $cn^{1/p}\tilde{a}\log^{1-1/p}(1/\tilde{a})$, where $\tilde{a}=\min(a,1-a)$.

Comments: Published in at http://dx.doi.org/10.1214/07-AIHP121 the Annales de l'Institut Henri Poincar\'e - Probabilit\'es et Statistiques (http://www.imstat.org/aihp/) by the Institute of Mathematical Statistics (http://www.imstat.org)
Journal: Annales de l'Institut Henri Poincar\'e - Probabilit\'es et Statistiques 2008, Vol. 44, No. 2, 362-373
Categories: math.PR, math.MG
Related articles: Most relevant | Search more
arXiv:math/0212322 [math.PR] (Published 2002-12-23, updated 2012-06-09)
A Resistance Bound via an Isoperimetric Inequality
arXiv:2104.03468 [math.PR] (Published 2021-04-08)
Projection scheme for polynomial diffusions on the unit ball
arXiv:2008.08380 [math.PR] (Published 2020-08-19)
Approximating $L_p$ unit balls via random sampling