{ "id": "math/0607398", "version": "v3", "published": "2006-07-17T22:30:01.000Z", "updated": "2008-05-23T05:29:38.000Z", "title": "An isoperimetric inequality on the $\\ell_p$ balls", "authors": [ "Sasha Sodin" ], "comment": "Published in at http://dx.doi.org/10.1214/07-AIHP121 the Annales de l'Institut Henri Poincar\\'e - Probabilit\\'es et Statistiques (http://www.imstat.org/aihp/) by the Institute of Mathematical Statistics (http://www.imstat.org)", "journal": "Annales de l'Institut Henri Poincar\\'e - Probabilit\\'es et Statistiques 2008, Vol. 44, No. 2, 362-373", "doi": "10.1214/07-AIHP121", "categories": [ "math.PR", "math.MG" ], "abstract": "The normalised volume measure on the $\\ell_p^n$ unit ball ($1\\leq p\\leq 2$) satisfies the following isoperimetric inequality: the boundary measure of a set of measure $a$ is at least $cn^{1/p}\\tilde{a}\\log^{1-1/p}(1/\\tilde{a})$, where $\\tilde{a}=\\min(a,1-a)$.", "revisions": [ { "version": "v3", "updated": "2008-05-23T05:29:38.000Z" } ], "analyses": { "keywords": [ "isoperimetric inequality", "normalised volume measure", "unit ball" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008AnIHP..44..362S" } } }