arXiv Analytics

Sign in

arXiv:math/0606509 [math.PR]AbstractReferencesReviewsResources

Spectral gap estimate for fractional Laplacian

M. Kwasnicki

Published 2006-06-20Version 1

A lower bound estimate \lambda_2 - \lambda_1 \ge c \lambda_1^{-d / \alpha} (\diam D)^{-d - \alpha} for the spectral gap of the Dirichlet fractional Laplacian on arbitrary bounded domain D is proved. This follows from a variational formula for the spectral gap and an upper bound estimate for the supremum norm of the ground state eigenfunction.

Comments: 8 pages
Journal: Probab. Math. Statist. 28(1) (2008) 163-167
Categories: math.PR
Related articles: Most relevant | Search more
arXiv:1712.03265 [math.PR] (Published 2017-12-08)
Heat kernel estimates for Dirichlet fractional Laplacian with gradient perturbation
arXiv:math/0407260 [math.PR] (Published 2004-07-15)
On the shape of the ground state eigenfunction for stable processes
arXiv:math/9807134 [math.PR] (Published 1998-07-24)
Non-Gaussian Surface Pinned by a Weak Potential