{ "id": "math/0606509", "version": "v1", "published": "2006-06-20T17:50:33.000Z", "updated": "2006-06-20T17:50:33.000Z", "title": "Spectral gap estimate for fractional Laplacian", "authors": [ "M. Kwasnicki" ], "comment": "8 pages", "journal": "Probab. Math. Statist. 28(1) (2008) 163-167", "categories": [ "math.PR" ], "abstract": "A lower bound estimate \\lambda_2 - \\lambda_1 \\ge c \\lambda_1^{-d / \\alpha} (\\diam D)^{-d - \\alpha} for the spectral gap of the Dirichlet fractional Laplacian on arbitrary bounded domain D is proved. This follows from a variational formula for the spectral gap and an upper bound estimate for the supremum norm of the ground state eigenfunction.", "revisions": [ { "version": "v1", "updated": "2006-06-20T17:50:33.000Z" } ], "analyses": { "keywords": [ "spectral gap estimate", "lower bound estimate", "ground state eigenfunction", "dirichlet fractional laplacian", "upper bound estimate" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......6509K" } } }