arXiv Analytics

Sign in

arXiv:math/0606156 [math.AP]AbstractReferencesReviewsResources

On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent

Mihai Mihailescu, Vicentiu Radulescu

Published 2006-06-07Version 1

We consider the nonlinear eigenvalue problem $-{\rm div}(|\nabla u|^{p(x)-2}\nabla u)=\lambda |u|^{q(x)-2}u$ in $\Omega$, $u=0$ on $\partial\Omega$, where $\Omega$ is a bounded open set in $\RR^N$ with smooth boundary and $p$, $q$ are continuous functions on $\bar\Omega$ such that $1<\inf\_\Omega q< \inf\_\Omega p<\sup\_\Omega q$, $\sup\_\Omega p<N$, and $q(x)<Np(x)/(N-p(x))$ for all $x\in\bar\Omega$. The main result of this paper establishes that any $\lambda>0$ sufficiently small is an eigenvalue of the above nonhomogeneous quasilinear problem. The proof relies on simple variational arguments based on Ekeland's variational principle.

Related articles: Most relevant | Search more
arXiv:math/0511167 [math.AP] (Published 2005-11-07)
On a nonlinear eigenvalue problem in Sobolev spaces with variable exponent
arXiv:math/0511193 [math.AP] (Published 2005-11-08)
Nonlinear eigenvalue problems in Sobolev spaces with variable exponent
arXiv:0711.0904 [math.AP] (Published 2007-11-06)
A continuous spectrum for nonhomogeneous differential operators in Orlicz-Sobolev spaces