{ "id": "math/0606156", "version": "v1", "published": "2006-06-07T14:36:38.000Z", "updated": "2006-06-07T14:36:38.000Z", "title": "On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent", "authors": [ "Mihai Mihailescu", "Vicentiu Radulescu" ], "categories": [ "math.AP" ], "abstract": "We consider the nonlinear eigenvalue problem $-{\\rm div}(|\\nabla u|^{p(x)-2}\\nabla u)=\\lambda |u|^{q(x)-2}u$ in $\\Omega$, $u=0$ on $\\partial\\Omega$, where $\\Omega$ is a bounded open set in $\\RR^N$ with smooth boundary and $p$, $q$ are continuous functions on $\\bar\\Omega$ such that $1<\\inf\\_\\Omega q< \\inf\\_\\Omega p<\\sup\\_\\Omega q$, $\\sup\\_\\Omega p0$ sufficiently small is an eigenvalue of the above nonhomogeneous quasilinear problem. The proof relies on simple variational arguments based on Ekeland's variational principle.", "revisions": [ { "version": "v1", "updated": "2006-06-07T14:36:38.000Z" } ], "analyses": { "subjects": [ "35D05", "35J60", "35J70", "58E05", "68T40", "76A02" ], "keywords": [ "nonhomogeneous quasilinear eigenvalue problem", "sobolev spaces", "variable exponent", "nonlinear eigenvalue problem", "simple variational arguments" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......6156M" } } }