arXiv:math/0605023 [math.AP]AbstractReferencesReviewsResources
On the Formation of Singularities in the Critical O(3) Sigma-Model
Igor Rodnianski, Jacob Sterbenz
Published 2006-04-30, updated 2008-08-22Version 3
We study the phenomena of energy concentration for the critical O(3) sigma model, also known as the wave map flow from R^{2+1} Minkowski space into the sphere S^2. We establish rigorously and constructively existence of a set of smooth initial data resulting in a dynamic finite time formation of singularities. The construction and analysis is done in the context of the k-equivariant symmetry reduction, and we restrict to maps with homotopy class k>3. The concentration mechanism we uncover is essentially due to a resonant self-focusing (shrinking) of a corresponding harmonic map. We show that the phenomenon is generic (e.g. in certain Sobolev spaces) and persists under small perturbations of initial data, while the resulting blowup is bounded by a log-modified self-similar asymptotic.