arXiv Analytics

Sign in

arXiv:math/0602116 [math.NT]AbstractReferencesReviewsResources

Bombieri-Vinogradov Type Theorem for Sparse Sets of Moduli

Stephan Baier, Liangyi Zhao

Published 2006-02-07, updated 2006-10-09Version 4

In this paper, we establish theorems of Bombieri-Vinogradov type and Barban-Davenport-Halberstam type for sparse sets of moduli. As an application, we prove that there exist infinitely many primes of the form $p=am^2+1$ such that $a\leq p^{5/9+\epsilon}$.

Comments: 11 Pages
Journal: Acta Arith., Vol. 125, No. 2, 2006, pp. 187-201.
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1811.07300 [math.NT] (Published 2018-11-18, updated 2020-03-10)
Large sieve with sparse sets of moduli for $\mathbb{Z}[i]$
arXiv:math/0512228 [math.NT] (Published 2005-12-12)
On the large sieve with sparse sets of moduli
arXiv:math/0508417 [math.NT] (Published 2005-08-22)
The large sieve with sparse sets of moduli