{ "id": "math/0602116", "version": "v4", "published": "2006-02-07T01:52:33.000Z", "updated": "2006-10-09T11:51:24.000Z", "title": "Bombieri-Vinogradov Type Theorem for Sparse Sets of Moduli", "authors": [ "Stephan Baier", "Liangyi Zhao" ], "comment": "11 Pages", "journal": "Acta Arith., Vol. 125, No. 2, 2006, pp. 187-201.", "categories": [ "math.NT" ], "abstract": "In this paper, we establish theorems of Bombieri-Vinogradov type and Barban-Davenport-Halberstam type for sparse sets of moduli. As an application, we prove that there exist infinitely many primes of the form $p=am^2+1$ such that $a\\leq p^{5/9+\\epsilon}$.", "revisions": [ { "version": "v4", "updated": "2006-10-09T11:51:24.000Z" } ], "analyses": { "subjects": [ "11B25", "11L20", "11L40", "11N05", "11N14", "11N32", "11N35", "11N36" ], "keywords": [ "bombieri-vinogradov type theorem", "sparse sets", "barban-davenport-halberstam type", "establish theorems" ], "tags": [ "journal article" ], "publication": { "doi": "10.4064/aa125-2-5", "journal": "Acta Arithmetica", "year": 2006, "volume": 125, "number": 2, "pages": 187 }, "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006AcAri.125..187B" } } }