arXiv Analytics

Sign in

arXiv:math/0601155 [math.RT]AbstractReferencesReviewsResources

An exotic Deligne-Langlands correspondence for symplectic groups

Syu Kato

Published 2006-01-08, updated 2009-03-03Version 7

Let G be a complex symplectic group. We introduce a G x (C ^x) ^{l + 1}-variety N_{l}, which we call the l-exotic nilpotent cone. Then, we realize the Hecke algebra H of type C_n ^(1) with three parameters via equivariant algebraic K-theory in terms of the geometry of N_2. This enables us to establish a Deligne-Langlands type classification of "non-critical" simple H-modules. As applications, we present a character formula and multiplicity formulas of H-modules.

Comments: v7, 52pages. Corrected typos and errors in the proofs of Lemma 4.1 and Theorem 6.2 modulo Proposition 6.7, final version, accepted for publication in Duke Math
Journal: Duke Math. J. 148 no.2 305--371 (2009)
Categories: math.RT, math.QA
Related articles: Most relevant | Search more
arXiv:0901.3918 [math.RT] (Published 2009-01-25, updated 2010-04-25)
Tempered modules in exotic Deligne-Langlands correspondence
arXiv:math/0607478 [math.RT] (Published 2006-07-19, updated 2008-01-27)
An exotic Springer correspondence for symplectic groups
arXiv:0907.1336 [math.RT] (Published 2009-07-08, updated 2010-03-18)
Pieri algebras for the orthogonal and symplectic groups