{ "id": "math/0601155", "version": "v7", "published": "2006-01-08T20:25:09.000Z", "updated": "2009-03-03T05:17:21.000Z", "title": "An exotic Deligne-Langlands correspondence for symplectic groups", "authors": [ "Syu Kato" ], "comment": "v7, 52pages. Corrected typos and errors in the proofs of Lemma 4.1 and Theorem 6.2 modulo Proposition 6.7, final version, accepted for publication in Duke Math", "journal": "Duke Math. J. 148 no.2 305--371 (2009)", "doi": "10.1215/00127094-2009-028", "categories": [ "math.RT", "math.QA" ], "abstract": "Let G be a complex symplectic group. We introduce a G x (C ^x) ^{l + 1}-variety N_{l}, which we call the l-exotic nilpotent cone. Then, we realize the Hecke algebra H of type C_n ^(1) with three parameters via equivariant algebraic K-theory in terms of the geometry of N_2. This enables us to establish a Deligne-Langlands type classification of \"non-critical\" simple H-modules. As applications, we present a character formula and multiplicity formulas of H-modules.", "revisions": [ { "version": "v7", "updated": "2009-03-03T05:17:21.000Z" } ], "analyses": { "keywords": [ "exotic deligne-langlands correspondence", "l-exotic nilpotent cone", "deligne-langlands type classification", "equivariant algebraic k-theory", "complex symplectic group" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 52, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......1155K" } } }