arXiv Analytics

Sign in

arXiv:math/0507079 [math.PR]AbstractReferencesReviewsResources

Gradient Bounds for Solutions of Elliptic and Parabolic Equations

Vladimir I. Bogachev, Giuseppe Da Prato, Michael Röckner, Zeev Sobol

Published 2005-07-04Version 1

Let $L$ be a second order elliptic operator on $R^d$ with a constant diffusion matrix and a dissipative (in a weak sense) drift $b \in L^p_{loc}$ with some $p>d$. We assume that $L$ possesses a Lyapunov function, but no local boundedness of $b$ is assumed. It is known that then there exists a unique probability measure $\mu$ satisfying the equation $L^*\mu=0$ and that the closure of $L$ in $L^1(\mu)$ generates a Markov semigroup $\{T_t\}_{t\ge 0}$ with the resolvent $\{G_\lambda\}_{\lambda > 0}$. We prove that, for any Lipschitzian function $f\in L^1(\mu)$ and all $t,\lambda>0$, the functions $T_tf$ and $G_\lambda f$ are Lipschitzian and |\nabla T_tf(x)| \leq T_t|\nabla f|(x) and |\nabla G_\lambda f(x)| \leq \frac{1}{\lambda} G_\lambda |\nabla f|(x). An analogous result is proved in the parabolic case.

Comments: 9 pages; BiBoS-Preprint 04-12-169; (BiBoS: http://www.physik.uni-bielefeld.de/bibos/)
Categories: math.PR
Subjects: 35J15, 35K10
Related articles: Most relevant | Search more
arXiv:2403.12333 [math.PR] (Published 2024-03-19)
Metastability in Parabolic Equations and Diffusion Processes with a Small Parameter
arXiv:2411.13266 [math.PR] (Published 2024-11-20)
A new maximal regularity for parabolic equations and an application
arXiv:1706.05124 [math.PR] (Published 2017-06-16)
Exact Simulation for Multivariate Itô Diffusions