{ "id": "math/0507079", "version": "v1", "published": "2005-07-04T18:57:54.000Z", "updated": "2005-07-04T18:57:54.000Z", "title": "Gradient Bounds for Solutions of Elliptic and Parabolic Equations", "authors": [ "Vladimir I. Bogachev", "Giuseppe Da Prato", "Michael Röckner", "Zeev Sobol" ], "comment": "9 pages; BiBoS-Preprint 04-12-169; (BiBoS: http://www.physik.uni-bielefeld.de/bibos/)", "categories": [ "math.PR" ], "abstract": "Let $L$ be a second order elliptic operator on $R^d$ with a constant diffusion matrix and a dissipative (in a weak sense) drift $b \\in L^p_{loc}$ with some $p>d$. We assume that $L$ possesses a Lyapunov function, but no local boundedness of $b$ is assumed. It is known that then there exists a unique probability measure $\\mu$ satisfying the equation $L^*\\mu=0$ and that the closure of $L$ in $L^1(\\mu)$ generates a Markov semigroup $\\{T_t\\}_{t\\ge 0}$ with the resolvent $\\{G_\\lambda\\}_{\\lambda > 0}$. We prove that, for any Lipschitzian function $f\\in L^1(\\mu)$ and all $t,\\lambda>0$, the functions $T_tf$ and $G_\\lambda f$ are Lipschitzian and |\\nabla T_tf(x)| \\leq T_t|\\nabla f|(x) and |\\nabla G_\\lambda f(x)| \\leq \\frac{1}{\\lambda} G_\\lambda |\\nabla f|(x). An analogous result is proved in the parabolic case.", "revisions": [ { "version": "v1", "updated": "2005-07-04T18:57:54.000Z" } ], "analyses": { "subjects": [ "35J15", "35K10" ], "keywords": [ "parabolic equations", "gradient bounds", "second order elliptic operator", "constant diffusion matrix", "unique probability measure" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......7079B" } } }