arXiv Analytics

Sign in

arXiv:math/0506555 [math.RT]AbstractReferencesReviewsResources

Crystal bases and simple modules for Hecke algebras of type G(p,p,n)

Jun Hu

Published 2005-06-27, updated 2007-02-20Version 3

We apply the crystal basis theory for Fock spaces over quantum affine algebras to the modular representations of the cyclotomic Hecke algebras of type $G(p,p,n)$. This yields a classification of simple modules over these cyclotomic Hecke algebras in the non-separated case, generalizing our previous work [J. Hu, J. Algebra 267 (2003) 7-20]. The separated case was completed in [J. Hu, J. Algebra 274 (2004) 446--490]. Furthermore, we use Naito--Sagaki's work [S. Naito & D. Sagaki, J. Algebra 251 (2002) 461--474] on Lakshmibai--Seshadri paths fixed by diagram automorphisms to derive explicit formulas for the number of simple modules over these Hecke algebras. These formulas generalize earlier results of [M. Geck, Represent. Theory 4 (2000) 370-397] on the Hecke algebras of type $D_n$ (i.e., of type $G(2,2,n)$).

Related articles: Most relevant | Search more
arXiv:math/0601572 [math.RT] (Published 2006-01-24, updated 2007-11-19)
The number of simple modules for the Hecke algebras of type G(r,p,n) (with an appendix by Xiaoyi Cui)
arXiv:math/0409297 [math.RT] (Published 2004-09-17)
Modular representations of cyclotomic Hecke algebras of type G(r,p,n)
arXiv:2105.08580 [math.RT] (Published 2021-05-18, updated 2023-11-27)
Defect in cyclotomic Hecke algebras