{ "id": "math/0506555", "version": "v3", "published": "2005-06-27T21:38:34.000Z", "updated": "2007-02-20T11:07:25.000Z", "title": "Crystal bases and simple modules for Hecke algebras of type G(p,p,n)", "authors": [ "Jun Hu" ], "comment": "38 pages", "categories": [ "math.RT", "math.QA" ], "abstract": "We apply the crystal basis theory for Fock spaces over quantum affine algebras to the modular representations of the cyclotomic Hecke algebras of type $G(p,p,n)$. This yields a classification of simple modules over these cyclotomic Hecke algebras in the non-separated case, generalizing our previous work [J. Hu, J. Algebra 267 (2003) 7-20]. The separated case was completed in [J. Hu, J. Algebra 274 (2004) 446--490]. Furthermore, we use Naito--Sagaki's work [S. Naito & D. Sagaki, J. Algebra 251 (2002) 461--474] on Lakshmibai--Seshadri paths fixed by diagram automorphisms to derive explicit formulas for the number of simple modules over these Hecke algebras. These formulas generalize earlier results of [M. Geck, Represent. Theory 4 (2000) 370-397] on the Hecke algebras of type $D_n$ (i.e., of type $G(2,2,n)$).", "revisions": [ { "version": "v3", "updated": "2007-02-20T11:07:25.000Z" } ], "analyses": { "subjects": [ "20C08", "20C20" ], "keywords": [ "simple modules", "crystal bases", "cyclotomic hecke algebras", "crystal basis theory", "formulas generalize earlier results" ], "note": { "typesetting": "TeX", "pages": 38, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......6555H" } } }