arXiv:math/0505187 [math.NT]AbstractReferencesReviewsResources
Mixed sums of squares and triangular numbers (II)
Song Guo, Hao Pan, Zhi-Wei Sun
Published 2005-05-10, updated 2007-12-24Version 5
For an integer $x$ let $t_x$ denote the triangular number $x(x+1)/2$. Following a recent work of Z. W. Sun, we show that every natural number can be written in any of the following forms with $x,y,z\in\Z$: $$x^2+3y^2+t_z, x^2+3t_y+t_z, x^2+6t_y+t_z, 3x^2+2t_y+t_z, 4x^2+2t_y+t_z.$$ This confirms a conjecture of Sun.
Journal: Integers 7(2007), A56, 5 pp
Tags: journal article
Related articles: Most relevant | Search more
arXiv:math/0412239 [math.NT] (Published 2004-12-13)
A remark on a conjecture of Borwein and Choi
On a conjecture of Kimoto and Wakayama
On a conjecture of Deutsch, Sagan, and Wilson