{ "id": "math/0505187", "version": "v5", "published": "2005-05-10T19:16:26.000Z", "updated": "2007-12-24T15:34:14.000Z", "title": "Mixed sums of squares and triangular numbers (II)", "authors": [ "Song Guo", "Hao Pan", "Zhi-Wei Sun" ], "journal": "Integers 7(2007), A56, 5 pp", "categories": [ "math.NT", "math.CO" ], "abstract": "For an integer $x$ let $t_x$ denote the triangular number $x(x+1)/2$. Following a recent work of Z. W. Sun, we show that every natural number can be written in any of the following forms with $x,y,z\\in\\Z$: $$x^2+3y^2+t_z, x^2+3t_y+t_z, x^2+6t_y+t_z, 3x^2+2t_y+t_z, 4x^2+2t_y+t_z.$$ This confirms a conjecture of Sun.", "revisions": [ { "version": "v5", "updated": "2007-12-24T15:34:14.000Z" } ], "analyses": { "subjects": [ "11E25", "11D85", "11P99" ], "keywords": [ "triangular number", "mixed sums", "natural number", "conjecture" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......5187G" } } }