arXiv:math/0505072 [math.AG]AbstractReferencesReviewsResources
On polarizations in invariant theory
Mark Losik, Peter W. Michor, Vladimir L. Popov
Published 2005-05-04Version 1
Given a reductive algebraic group $G$ and a finite dimensional algebraic $G$-module $V$, we study how close is the algebra of $G$-invariant polynomials on $V^{\oplus n}$ to the subalgebra generated by polarizations of $G$-invariant polynomials on $V$. We address this problem in a more general setting of $G$-actions on arbitrary affine varieties.
Comments: 15 pages
Journal: J. Algebra, vol. 301 (2006), no. 1, 406--424.
Categories: math.AG
Keywords: invariant theory, polarizations, invariant polynomials, arbitrary affine varieties, finite dimensional algebraic
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1807.02890 [math.AG] (Published 2018-07-08)
Instability in invariant theory
arXiv:2108.08989 [math.AG] (Published 2021-08-20)
Standard monomials and invariant theory of arc spaces II: Symplectic group
Comparison theorems for deformation functors via invariant theory