arXiv Analytics

Sign in

arXiv:math/0505072 [math.AG]AbstractReferencesReviewsResources

On polarizations in invariant theory

Mark Losik, Peter W. Michor, Vladimir L. Popov

Published 2005-05-04Version 1

Given a reductive algebraic group $G$ and a finite dimensional algebraic $G$-module $V$, we study how close is the algebra of $G$-invariant polynomials on $V^{\oplus n}$ to the subalgebra generated by polarizations of $G$-invariant polynomials on $V$. We address this problem in a more general setting of $G$-actions on arbitrary affine varieties.

Comments: 15 pages
Journal: J. Algebra, vol. 301 (2006), no. 1, 406--424.
Categories: math.AG
Subjects: 14L24, 14L30
Related articles: Most relevant | Search more
arXiv:1807.02890 [math.AG] (Published 2018-07-08)
Instability in invariant theory
arXiv:2108.08989 [math.AG] (Published 2021-08-20)
Standard monomials and invariant theory of arc spaces II: Symplectic group
arXiv:1209.3444 [math.AG] (Published 2012-09-15, updated 2018-09-07)
Comparison theorems for deformation functors via invariant theory