{ "id": "math/0505072", "version": "v1", "published": "2005-05-04T10:49:57.000Z", "updated": "2005-05-04T10:49:57.000Z", "title": "On polarizations in invariant theory", "authors": [ "Mark Losik", "Peter W. Michor", "Vladimir L. Popov" ], "comment": "15 pages", "journal": "J. Algebra, vol. 301 (2006), no. 1, 406--424.", "categories": [ "math.AG" ], "abstract": "Given a reductive algebraic group $G$ and a finite dimensional algebraic $G$-module $V$, we study how close is the algebra of $G$-invariant polynomials on $V^{\\oplus n}$ to the subalgebra generated by polarizations of $G$-invariant polynomials on $V$. We address this problem in a more general setting of $G$-actions on arbitrary affine varieties.", "revisions": [ { "version": "v1", "updated": "2005-05-04T10:49:57.000Z" } ], "analyses": { "subjects": [ "14L24", "14L30" ], "keywords": [ "invariant theory", "polarizations", "invariant polynomials", "arbitrary affine varieties", "finite dimensional algebraic" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......5072L" } } }