arXiv Analytics

Sign in

arXiv:math/0505021 [math.AP]AbstractReferencesReviewsResources

Multipliers spaces and pseudo-differential operators

Sadek Gala

Published 2005-05-02Version 1

Let $\sigma(x,\xi) $ be a sufficiently regular function defined on $R^d \times R^d.$ The pseudo-differential operator with symbol $\sigma$ is defined on the Schwartz class by the formula: \[f\to\sigma f(x)=\int_{R^d} \sigma(x,\xi) \hat{f}(\xi)e^{2\pi ix\xi}d\xi, \] where $\hat{f}(\xi)=\int_{R^d} f(x)e^{-2\pi ix\xi}dx$ is the Fourier transform of $f.$ In this paper, we shall consider the regularity of the following type : \begin{description} \item[(a)] $| \partial_{\xi}^{\alpha}\sigma(x,\xi) | \leq A_{\alpha}(1+| \xi|) ^{-| \alpha|},$ \item[(b)] $| \partial_{\xi}^{\alpha}\sigma(x+y,\xi) -\partial_{\xi}^{\alpha}\sigma(x,\xi) | \leq A_{\alpha}\omega(| y|) (1+| \xi|) ^{-| \alpha|},$ \end{description} %

Related articles: Most relevant | Search more
arXiv:1806.08051 [math.AP] (Published 2018-06-21)
Decay of conical averages of the Fourier transform
arXiv:1101.3121 [math.AP] (Published 2011-01-17)
Quantifying momenta through the Fourier transform
arXiv:1302.1262 [math.AP] (Published 2013-02-06)
The Fourier transform and convolutions generated by a differential operator with boundary condition on a segment