{ "id": "math/0505021", "version": "v1", "published": "2005-05-02T11:04:21.000Z", "updated": "2005-05-02T11:04:21.000Z", "title": "Multipliers spaces and pseudo-differential operators", "authors": [ "Sadek Gala" ], "categories": [ "math.AP" ], "abstract": "Let $\\sigma(x,\\xi) $ be a sufficiently regular function defined on $R^d \\times R^d.$ The pseudo-differential operator with symbol $\\sigma$ is defined on the Schwartz class by the formula: \\[f\\to\\sigma f(x)=\\int_{R^d} \\sigma(x,\\xi) \\hat{f}(\\xi)e^{2\\pi ix\\xi}d\\xi, \\] where $\\hat{f}(\\xi)=\\int_{R^d} f(x)e^{-2\\pi ix\\xi}dx$ is the Fourier transform of $f.$ In this paper, we shall consider the regularity of the following type : \\begin{description} \\item[(a)] $| \\partial_{\\xi}^{\\alpha}\\sigma(x,\\xi) | \\leq A_{\\alpha}(1+| \\xi|) ^{-| \\alpha|},$ \\item[(b)] $| \\partial_{\\xi}^{\\alpha}\\sigma(x+y,\\xi) -\\partial_{\\xi}^{\\alpha}\\sigma(x,\\xi) | \\leq A_{\\alpha}\\omega(| y|) (1+| \\xi|) ^{-| \\alpha|},$ \\end{description} %", "revisions": [ { "version": "v1", "updated": "2005-05-02T11:04:21.000Z" } ], "analyses": { "subjects": [ "42Bxx", "31Bxx" ], "keywords": [ "pseudo-differential operator", "multipliers spaces", "schwartz class", "fourier transform", "sufficiently regular function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }