arXiv:math/0504156 [math.GR]AbstractReferencesReviewsResources
Conjugacy classes and finite $p$-groups
Published 2005-04-07Version 1
Let $G$ be a finite $p$-group, where $p$ is a prime number, and $a\in G$. Denote by $\Cl(a)=\{gag^{-1}\mid g\in G\}$ the conjugacy class of $a$ in $G$. Assume that $|\Cl(a)|=p^n$. Then $\Cl(a)\Cl(a^{-1})=\{xy\mid x\in \Cl(a), y\in \Cl(a^{-1})\}$ is the union of at least $n(p-1)+1$ distinct conjugacy classes of $G$.
Categories: math.GR
Keywords: distinct conjugacy classes, prime number
Related articles: Most relevant | Search more
On conjugacy classes of SL$(2,q)$
arXiv:2109.05328 [math.GR] (Published 2021-09-11)
2-nilpotent multiplier and 2-capability of finite 2-generator p-groups of class two
arXiv:math/0508048 [math.GR] (Published 2005-08-01)
On nilpotent groups and conjugacy classes