{ "id": "math/0504156", "version": "v1", "published": "2005-04-07T19:36:31.000Z", "updated": "2005-04-07T19:36:31.000Z", "title": "Conjugacy classes and finite $p$-groups", "authors": [ "Edith Adan-Bante" ], "categories": [ "math.GR" ], "abstract": "Let $G$ be a finite $p$-group, where $p$ is a prime number, and $a\\in G$. Denote by $\\Cl(a)=\\{gag^{-1}\\mid g\\in G\\}$ the conjugacy class of $a$ in $G$. Assume that $|\\Cl(a)|=p^n$. Then $\\Cl(a)\\Cl(a^{-1})=\\{xy\\mid x\\in \\Cl(a), y\\in \\Cl(a^{-1})\\}$ is the union of at least $n(p-1)+1$ distinct conjugacy classes of $G$.", "revisions": [ { "version": "v1", "updated": "2005-04-07T19:36:31.000Z" } ], "analyses": { "keywords": [ "distinct conjugacy classes", "prime number" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......4156A" } } }