arXiv:math/0503597 [math.PR]AbstractReferencesReviewsResources
Global L_2-solutions of stochastic Navier-Stokes equations
R. Mikulevicius, B. L. Rozovskii
Published 2005-03-25Version 1
This paper concerns the Cauchy problem in R^d for the stochastic Navier-Stokes equation \partial_tu=\Delta u-(u,\nabla)u-\nabla p+f(u)+ [(\sigma,\nabla)u-\nabla \tilde p+g(u)]\circ \dot W, u(0)=u_0,\qquad divu=0, driven by white noise \dot W. Under minimal assumptions on regularity of the coefficients and random forces, the existence of a global weak (martingale) solution of the stochastic Navier-Stokes equation is proved. In the two-dimensional case, the existence and pathwise uniqueness of a global strong solution is shown. A Wiener chaos-based criterion for the existence and uniqueness of a strong global solution of the Navier-Stokes equations is established.