{ "id": "math/0503597", "version": "v1", "published": "2005-03-25T13:55:30.000Z", "updated": "2005-03-25T13:55:30.000Z", "title": "Global L_2-solutions of stochastic Navier-Stokes equations", "authors": [ "R. Mikulevicius", "B. L. Rozovskii" ], "comment": "Published at http://dx.doi.org/10.1214/009117904000000630 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)", "journal": "Annals of Probability 2005, Vol. 33, No. 1, 137-176", "doi": "10.1214/009117904000000630", "categories": [ "math.PR" ], "abstract": "This paper concerns the Cauchy problem in R^d for the stochastic Navier-Stokes equation \\partial_tu=\\Delta u-(u,\\nabla)u-\\nabla p+f(u)+ [(\\sigma,\\nabla)u-\\nabla \\tilde p+g(u)]\\circ \\dot W, u(0)=u_0,\\qquad divu=0, driven by white noise \\dot W. Under minimal assumptions on regularity of the coefficients and random forces, the existence of a global weak (martingale) solution of the stochastic Navier-Stokes equation is proved. In the two-dimensional case, the existence and pathwise uniqueness of a global strong solution is shown. A Wiener chaos-based criterion for the existence and uniqueness of a strong global solution of the Navier-Stokes equations is established.", "revisions": [ { "version": "v1", "updated": "2005-03-25T13:55:30.000Z" } ], "analyses": { "subjects": [ "60H15", "35R60", "76M35" ], "keywords": [ "stochastic navier-stokes equation", "strong global solution", "global strong solution", "paper concerns", "wiener chaos-based criterion" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......3597M" } } }